Translation suppression promotes stress granule formation and cell survival in response to cold shock
نویسندگان
چکیده
Cells respond to different types of stress by inhibition of protein synthesis and subsequent assembly of stress granules (SGs), cytoplasmic aggregates that contain stalled translation preinitiation complexes. Global translation is regulated through the translation initiation factor eukaryotic initiation factor 2α (eIF2α) and the mTOR pathway. Here we identify cold shock as a novel trigger of SG assembly in yeast and mammals. Whereas cold shock-induced SGs take hours to form, they dissolve within minutes when cells are returned to optimal growth temperatures. Cold shock causes eIF2α phosphorylation through the kinase PERK in mammalian cells, yet this pathway is not alone responsible for translation arrest and SG formation. In addition, cold shock leads to reduced mitochondrial function, energy depletion, concomitant activation of AMP-activated protein kinase (AMPK), and inhibition of mTOR signaling. Compound C, a pharmacological inhibitor of AMPK, prevents the formation of SGs and strongly reduces cellular survival in a translation-dependent manner. Our results demonstrate that cells actively suppress protein synthesis by parallel pathways, which induce SG formation and ensure cellular survival during hypothermia.
منابع مشابه
YB-1 regulates tiRNA-induced Stress Granule formation but not translational repression
Stress-induced angiogenin (ANG)-mediated tRNA cleavage promotes a cascade of cellular events that starts with production of tRNA-derived stress-induced RNAs (tiRNAs) and culminates with enhanced cell survival. This stress response program relies on a subset tiRNAs that inhibit translation initiation and induce the assembly of stress granules (SGs), cytoplasmic ribonucleoprotein complexes with c...
متن کاملStress granule assembly is mediated by prion-like aggregation of TIA-1.
TIA-1 is an RNA binding protein that promotes the assembly of stress granules (SGs), discrete cytoplasmic inclusions into which stalled translation initiation complexes are dynamically recruited in cells subjected to environmental stress. The RNA recognition motifs of TIA-1 are linked to a glutamine-rich prion-related domain (PRD). Truncation mutants lacking the PRD domain do not induce spontan...
متن کاملTIA1 oxidation inhibits stress granule assembly and sensitizes cells to stress-induced apoptosis
Cytoplasmic stress granules (SGs) are multimolecular aggregates of stalled translation pre-initiation complexes that prevent the accumulation of misfolded proteins, and that are formed in response to certain types of stress including ER stress. SG formation contributes to cell survival not only by suppressing translation but also by sequestering some apoptosis regulatory factors. Because cells ...
متن کاملEffect of thermal shocks on survival and safety responses of oriental river prawn, Macrobrachium nipponense (De Haan, 1849)
This study was performed to determine the severity of hormonal changes and the immune system of oriental river prawn (Macrobrachium nipponense) in the face of thermal stresses (heat and cold). For this purpose, 80 pieces of prawn with an average weight of 1.5 ±0.3g were prepared from Anzali wetland and in the laboratory after a rest period, under thermal stresses (from 15 ° C to 22 ° C) and col...
متن کاملVinca alkaloid drugs promote stress-induced translational repression and stress granule formation
Resistance to chemotherapy drugs is a serious therapeutic problem and its underlying molecular mechanisms are complex. Stress granules (SGs), cytoplasmic ribonucleoprotein complexes assembled in cells exposed to stress, are implicated in various aspects of cancer cell metabolism and survival. SGs promote the survival of stressed cells by reprogramming gene expression and inhibiting pro-apoptoti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 23 شماره
صفحات -
تاریخ انتشار 2012